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Low-frequency waves that develop in a shallow layer of fluid, contained in a
channel with linearly slopping bottom and rotating with uniform angular speed
are investigated theoretically and experimentally. Exact numerical solutions of the
eigenvalue problem, obtained from the linearized shallow water equations on the f-
plane, show that the waves are trapped near the channel’s shallow wall and propagate
along it with the shallow side on their right in the Northern hemisphere. The phase
speed of the waves is slower compared with that of the harmonic theory in which
bottom slope is treated inconsistently. A first-order approximation of the cross-channel
dependence of the coefficient in the eigenvalue equation yields an approximation of
the cross-channel velocity eigenfunction as an Airy function, which, for sufficiently
wide channels, yields an explicit expression for the wave’s dispersion relation. The
analytic solutions of the eigenvalue problem agree with the numerical solutions in
both the wave trapping and the reduced phase speed. For narrow channels, our theory
yields an estimate of the channel width below which the harmonic theory provides
a more accurate approximation. Laboratory experiments were conducted on a 13 m
diameter turntable at LEGI-Coriolis (France) into which a linearly sloping bottom
of 10 % incline was installed. A wavemaker generated waves of known frequency at
one end of the turntable and the wavenumbers of these waves were measured at the
opposite end using a particle imaging velocimetry technique. The experimental results
regarding the phase speed and the radial structure of the amplitude are in very good
agreement with our theoretical non-harmonic predictions, which support the present
modification of the harmonic theory in wide channels.

1. Introduction
The existence of low-frequency waves in a layer of fluid over a sloping bottom has

been established in the framework of a harmonic theory where the depth variations
induce vorticity gradients similar to that of the β-term in planetary waves (Rhines
1970; Gill 1982; Pedlosky 1986). The low-frequency waves that develop in a layer
of fluid where the depth (thickness) is non-constant are therefore called topographic
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Rossby waves (TRW). Their name highlights the fact that these waves originate from
changes in (potential) vorticity caused by the variations in the height (thickness)
of a water column, as it moves up and down the shelf. The low-frequency TRW
belong to a wider class of coastally trapped waves whose high frequency members
include Kelvin waves, edge waves and inertia–gravity waves. Observations of TRW
were reported on continental shelves throughout the world. The early observations
followed the analysis of records from two tide-gauges located along a coast. Examples
of such observations include the east Australia coastline (Hamon 1962), the west
Australia coastline (Hamon 1966), the coast of North Carolina (Mysak & Hamon
1969) and the coast of Oregon (Mooers & Smith 1968). The existence of TRW was
also demonstrated in current meter observations reported by Cartwright (1969) in
St. Kilda (Scotland) and by Cutchin & Smith (1973) along the coast of Oregon.
The observed TRW propagate parallel to the shoreline with the coast on the right
(respectively left) in the northern (respectively southern) hemisphere.

In this study, we develop a non-harmonic theory for TRW in a channel on the f-
plane, i.e. when the rotation vector is spatially uniform and two walls bound the layer
of fluid. This set-up is fairly easy to construct in laboratory experiments carried out on
a cylindrical turntable with sloping bottom. From a theoretical viewpoint, this set-up
is advantageous in that it eliminates the singularity associated with the vanishing of
the mean fluid thickness at the shoreline. In the harmonic wave theory, analytical
solutions for waves in a channel are found by setting all coefficients of the associated
eigenvalue equation to constants (see Pedlosky 1986; Cushman-Roisin 1994). In order
to account for the case of a slightly sloping bottom, the mean height of the fluid is
assumed constant everywhere, while the derivative of the mean height is taken to be
non-zero (but constant) to enable the potential vorticity to change (and TRW to form).
The assumption of a nearly constant mean depth (height) limits the applicability of
this theory to narrow channels with gently sloping bottoms only. In addition to the
apparent inconsistency of the harmonic theory, where the depth is assumed constant
everywhere in the equations but its derivative is assumed non-zero, this assumption
has also been shown to violate energy conservation (Staniforth, Williams & Neta
1993). Exact analytical solutions of harmonic waves were obtained for non-divergent
flows by Buchwald & Adams (1968) for a channel with an exponentially sloping
bottom. Both this theory and the divergent harmonic ones yield similar dispersion
relations in which the frequency vanishes for very small, as well as for very large
wavenumbers, and the maximal frequency occurs at some finite wavenumber for all
modes.

Numerical solutions for divergent flows in a channel with an exponentially sloping
bottom were calculated by Caldwell, Cutchin & Longuet-Higgins (1972). The resulting
dispersion curves are similar to those of the non-divergent theory, but the frequencies
are lower by up to 20 % compared with those of the analytic non-divergent theory
(the difference varies with the model parameters).

The harmonic analysis of TRW over linearly sloping bottoms (Pedlosky 1986) was
extended numerically to the non-harmonic regime by Staniforth et al. (1993), who
solved the eigenvalue equation numerically. These solutions clearly demonstrate that
the harmonic approximation is valid only for gently sloping bottoms, and that the non-
harmonic functions are the confluent hyper-geometric functions instead of harmonic
(sine and cosine) ones. However, this finding does not simplify the eigenvalue problem
sufficiently so as to yield an explicit expression for the dispersion relation of the
non-harmonic waves. A non-harmonic theory for the planetary Rossby waves on the
β-plane was developed by Paldor, Rubin & Mariano (2007) by solving the eigenvalue,
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Schrödinger, equation numerically. Explicit expressions for the dispersion relations of
the non-harmonic planetary waves were derived by linearly expanding the potential
of the relevant Schrödinger equation about the equatorward boundary (Paldor &
Sigalov 2008). This expansion allows the formulation of an explicit expression for the
dispersion relation of the non-harmonic waves, whose amplitudes are trapped near
the equatorward boundary so that the dispersion relation becomes independent of
the channel width for sufficiently wide channels. An application of this approach to
spherical coordinates has yielded explicit expressions of the dispersion relations that
have no harmonic counterpart (De-Leon & Paldor 2009). As pointed out above, in
terms of vorticity generation, the variation of f (y) in the planetary wave problem is
analogous to the variation of H (y) in TRW (where H is the mean thickness of the fluid
and y is the cross-channel coordinate). Thus, it is natural to apply the same method
used for deriving the characteristics of planetary waves on the β-plane or the sphere
to topographic waves with a non-constant H. The non-harmonic theory developed
in the present study complements the study of Staniforth et al. (1993) by deriving
explicit expressions for the dispersion relations and validating these expressions by
comparing them to laboratory results. Since the slope of the linear bottom profile in
our theory is arbitrary, the theory provides a first-order approximation to any realistic
bottom slope.

The generation of TRW in laboratory experiments is done by forcing a displacement
of the fluid from its mean thickness. Such experiments were previously carried out in
a flat-bottom annulus in which depth variations were generated by rotating the fluid,
which produced the necessary radial thickness variations (see Ibbetson 1967; Platzman
1968). The results of Ibbetson’s experiments were in good agreement with the divergent
rotating theory of Phillips (1965). The results of a more advanced experimental set-up
in which the bottom slope is exponential were reported by Caldwell et al. (1972).
These results showed good agreement between the experimental results and numerical
solutions of the eigenvalue problem.

This paper is organized as follows. Following the formulation of the eigenvalue
problem in § 2 for any linear H (y), we proceed in § 3 to the application to TRW of the
method used in the study of non-harmonic planetary waves, which yields an explicit
expression for the dispersion relation of the non-harmonic TRW. In § 4 we describe
a set of experiments carried out in a turntable with a linearly sloping bottom that
correspond to the theory developed in § 3. We end in § 5 with a discussion of the
theoretical and experimental results.

2. Formulation of the model and the eigenvalue equation
The physical set-up of the problem is shown in figure 1, where x∗ and y∗ are the

long channel and cross-channel horizontal Cartesian coordinates, respectively (x∗ is
positive when the shallow wall is on its right), u∗ and v∗ are the corresponding velocity
components in these directions. η∗ is the displacement of the free surface from its
mean height H ∗(y) = H0 + H ′y∗ where H ′ (a positive constant) is the derivative of
H ∗(y) with respect to y

∗
and H0 is the water depth at y∗ = 0 (the shallow wall).

The linear shallow water equations (LSWE) that describe the dynamics of a thin
layer of fluid (i.e. Euler equations with rotation for a shallow layer of incompressible
fluid) are

∂u∗

∂t∗ − f v∗ + g
∂η∗

∂x∗ = 0, (1a)
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Figure 1. A cross-section of the channel, including the definition of the (dimensional) model
parameters. The right-hand Cartesian coordinate system and rotation are shown on the left.
The cross-channel velocity vanishes at the two channel boundaries and the channel width is
L∗. The mean depth, which varies linearly in the cross-channel direction, is uniform in the
(infinite) long-channel direction.

∂v∗

∂t∗ + f u∗ + g
∂η∗

∂y∗ = 0, (1b)

∂η∗

∂t∗ + H ∗
(

∂u∗

∂x∗ +
∂v∗

∂y∗

)
+ H ′v = 0, (1c)

where f is the (constant) Coriolis frequency and g is the gravitational constant (the
reduced gravity in equivalent barotropic cases). To minimize the number of parameters
in system (1), we non-dimensionalize it by scaling variables as follows: The depth scale
is taken as H0 (the depth at y =0), time scale is f −1, the velocity components scale
is

√
gH0 and the horizontal length scale is the radius of deformation, Rd =

√
gH0/f .

The following non-dimensional system that results from this scaling of system (1) (the
non-dimensional variables are denoted similar to the dimensional ones but without
the asterisk) has a single non-dimensional parameter α:

∂u

∂t
− v +

∂η

∂x
= 0, (2a)

∂v

∂t
+ u +

∂η

∂y
= 0, (2b)

∂η

∂t
+ (1 + αy)

(
∂u

∂x
+

∂v

∂y

)
+ αv = 0. (2c)

Here, 1 + αy is the non-dimensional mean depth and the non-dimensional parameter
α = H ′RdH

−1
0 incorporates the bottom slope, the horizontal length scale and the depth

scale. Our velocity scale,
√

gH0, is the phase speed of Kelvin waves (or gravity waves)
at y =0. Since all the coefficients are independent of x, the long channel direction,
it is natural to assume harmonic solutions in the long channel direction for all three
variables, i.e. u, v, η ∼ expi(kx−ωt), where k is the wavenumber, c is the phase speed (so
ω = ck is the frequency). This form of solution enables us to represent the temporal
and x derivatives as multiplication by the frequency and wavenumber, respectively.
Letting (∂/∂x) = ik, (∂/∂t) = −iω and defining V = iv/k in system (2) yields the (real)
system:

c u − V − η = 0, (3a)

u − k2c V +
∂η

∂y
= 0, (3b)
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− (1 + αy) u + (1 + αy)
∂V

∂y
+ αV + cη = 0. (3c)

Equation (3a) yields u = (V + η)/c, which can be used to eliminate u in (3b) and (3c).
The result is the following pair of first-order differential equations:

∂η

∂y
= −η

1

c
+ V

[
k2c − 1

c

]
, (4a)

∂V

∂y
= η

[
1

c
− c

1 + αy

]
+ V

[
1

c
− α

1 + αy

]
. (4b)

The value(s) of c in system (4) can only be determined by imposing two boundary
conditions (hereafter BC) on the general solutions of this differential set, which for
the case of a channel are simply the vanishing of V at the two channel walls. We find
it convenient to derive a single second-order equation for V (rather than for η, as was
done by Staniforth et al. 1993) since it simplifies the form of the two BC at the channel
walls. The resulting second-order equation enables one to examine analytically the
characters of the system’s solutions by viewing it as a Schrödinger equation whose
potential is expanded to first-order in y. This expansion provides an approximation
for the eigenfunctions in wide channels (similar to the way Paldor & Sigalov 2008
found approximate solutions for planetary waves) and yields a simple approximate
expression for the dispersion relation of these waves that can be compared with
observations. Towards this end, system (4) is rewritten for the cross-channel volume
transport Ṽ =V (1 + αy) and reduced to a single second-order equation for Ṽ by
differentiating equation (4b) and eliminating both η and ∂η/∂y. Neglecting quadratic
terms in ω = ck (which limits our solutions to low-frequency waves only) we get

∂2Ṽ

∂y2
=

∂Ṽ

∂y

(
α

1 + αy

)
+ Ṽ

(
k2 +

1

(1 + αy)
− α

c

1

1 + αy
+

1

4

(
α

1 + αy

)2
)

. (5)

Letting Ṽ (y) = V (1+αy) = Ψ eay where a = α(2+2αy)−1 eliminates the first derivative
in the second-order equation for Ψ . If, in addition, all y-dependent terms in the
Ψ -equation (i.e. the terms that multiply Ψ ) are expanded to first-order in y (i.e.
neglecting terms of order y2), the resulting second-order equation for Ψ becomes

∂2Ψ

∂y2
− Ψ (E + (k2 − E − α2/4)αy) = 0, (6)

where the eigenvalue E is given by

E = 1 + k2 + α2/4 − α/c. (7)

Since eay never vanishes Ψ has to satisfy the same BC as Ṽ . Formally, the elimination
of the quadratic terms in y entails a restriction on the values of α (for the Taylor
series to converge). However, the numerical results (see e.g. figure 2) show that the
eigenfunctions decay fairly fast with distance from the shallow wall (i.e. they occupy
a small sub-range of the channel near y = 0 only) so the elimination of the y2 terms
is of wider applicability than can be formally justified based on the maximum values
of y (i.e. L) and α.



484 Y. Cohen, N. Paldor and J. Sommeria

0.5 1.0 1.5 2.0 2.5 3.0 3.50

0.005

0.010

0.015

0.020
ω

0.025

0.030

0.035

0.040

(a)

(b) (c)

1 2 3 4 50

2

4

y y
5 10 15 20 25 300

2

4

L = 3

L = 5

L = 10

L = 30

L = 100

L = 10

V L = 5

L = 3

k

L = 30

α = 0.1

Figure 2. (a) Numerically calculated dispersion relations of the first (n= 0) TRW mode
for different channel widths (L) with α = 0.1. (b, c) Numerically calculated amplitudes
(eigenfunctions) of the cross-channel velocity, V (y), at k =1 for L =3, L =5 (b, where the
abscissa extends only to y =5) and L = 10, L = 30 (c, where the abscissa extends to y = 30).
The arbitrary normalization used in all cases is η(y = 0) = 0.1.

3. Numerical and analytical solutions
The (η, V ) system, (4), is a set of ordinary differential equations (ODE) in y that

can be easily integrated numerically from one channel wall starting with V = 0 (and
say, η = 0.1 as an arbitrary normalization) to the other wall, and the value of c is
then varied so as to satisfy V = 0 BC there. Here, the integration is performed by
using MATLAB’s function BVP4C which integrates the equations and finds the value
of c for which V vanishes at the deep wall. The BVP4C, function solves the ODE
system and the associated boundary condition as a boundary value problem using
a fourth-order collocation method. The accuracy of this solution was confirmed by
directly integrating the ODE using a fifth-order Runge–Kutta integrator into which
the value of c from the BVP4C solution is inserted and verifying that V vanishes at
the deep wall as required.

Numerical solutions of the eigenvalue problem present both the values of the phase
speed that yield the dispersion curves c(k) and the eigenfunctions u(y), V (y) and
η(y). Three well-known wave types are found in the results: the non-dispersive Kelvin
waves, the dispersive, high-frequency Poincare waves and the dispersive, low-frequency
TRW. The identification of the wave type (i.e. Poincare, Kelvin or TRW) is done
according to the value of the frequency. Since the time scale is the Coriolis frequency,
wave solutions with frequencies higher than unity are identified as Poincare waves and
wave solutions with frequencies lower than unity are identified as TRW. Kelvin waves
are clearly identified by the cross-channel velocity eigenfunction since V vanishes
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almost everywhere across the channel. The index of the mode (n) is determined by
the number of zero crossings of V (y). Since this study focuses on TRW, the solutions
for the high frequency wave types (Kelvin and Poincare) found in our numerical
solutions are not shown.

In figure 2(a) the dispersion relations, ω(k), of the first (n= 0) mode are shown for
the indicated values of channel widths, L, and for α = 0.1. These results show that
for given, sufficiently small, k the frequency first increases with the channel width, but
at L > 10, the frequency practically converges to an asymptotic value. Both the small
difference between the curves of L =10 and L =30 and the complete overlap between
the x marks (that represent the dispersion relation for L = 100) and the L =30 curve
clearly substantiate these findings. In figure 2(b, c) the corresponding structure of
the V (y) eigenfunctions for k = 1 is compared: for narrow channels (L = 3 vs. L =5)
in figure 2(b) and for wide channels (L = 10 vs. L = 30) in figure 2(c). For L < 10,

the eigenfunction’s structure is very close to harmonic with the maximal amplitude
near the centre of the channel (figure 2b). As L increases (L � 10), the structure of
eigenfunctions becomes trapped near the shallow wall with the location of maximal
amplitude limited to y ≈ 3 (figure 2c). These qualitative features of the eigensolutions
typify other values of α and they persist for other modes (results not shown). The
results clearly indicate the existence of non-harmonic solutions to the eigenvalue
equation for some values of the parameters α and L.

A harmonic approximation to (6) is easily constructed by neglecting the αy term
in the coefficient of Ψ (so the equation has constant-coefficients). When this is done,
the eigensolutions are given by trigonometric functions and the imposition of the BC
at the two walls yields the dispersion relation for the frequency as a function of α, k
and L, which for mode n (that has n zero crossings of V in the channel) becomes

ω =
αk

1 + k2 + (n + 1)2π2/L2
. (8)

Equation (8) is found in various textbooks (e.g. Pedlosky 1982; Cushman-Roisin
1994) as the classical harmonic solution for the dispersion relation of TRW. Here,
n (mode number) represents the number of nodal points (zero crossing) of the V (y)
eigenfunction, and it is clear that the phase speed decreases with the mode number.
The sign of the phase speed equals the sign of α; hence, in the northern hemisphere
(f > 0), the waves propagate along the channel with the shallow wall on the right
(and on the left in the southern hemisphere).

It should be emphasized that this harmonic solution is obtained by neglecting αy

in (6), which is valid only in narrow channels with gentle slopes (but no estimate
exists of how small α should be for this approximation to hold). The eigenfunctions
shown in figure 2 demonstrate that as the channel width, L, increases the harmonic
solution does not provide an accurate approximation to the exact one. The effect
that the increase in L has on the dispersion curves is shown in figure 3, from which
it is clear that in the non-harmonic regime (large α or L) the phase speed is much
smaller than the harmonic ones (for the same value of k). In order to approximate
analytically the non-harmonic solutions, the αy term in (6) must be retained. Since
in this case the coefficient of Ψ is linear with respect to y, a transformation of this
equation to an Airy equation (similar to that employed by Paldor & Sigalov 2008 and
De-Leon & Paldor 2009 in their study of planetary waves) should also be possible.
We thus transform (6) to

∂2Ψ

∂Z2
− ZΨ = 0, (9)
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Figure 3. The dispersion relations of the n= 0 TRW mode for the indicated values of α and
L: the exact numerical solution (solid black line) harmonic approximation ((8); solid grey line)
and non-harmonic, Airy-function, approximation ((11); dashed line). The harmonic solution
yields reasonably accurate approximation only at small α and L (and not too large k).

where Z is defined by

Z(y) = (k2 − E − α2/4)−2/3)α−2/3(E + (k2 − E − α2/4)αy). (10)

The solutions of (9) are Airy functions Ai(Z) and Bi(Z) shown in figure 4(a). Both
functions oscillate for negative Z, while for positive Z, Ai decays monotonically and
Bi grows monotonically (both at a rate faster than exponential; see e.g. Abramowitz &
Stegun 1972). These realizations are now used to construct the non-harmonic solution
similar to the way it was done by Paldor & Sigalov (2008) and De-Leon & Paldor
(2009) in the study of non-harmonic planetary waves, and the interested reader is
referred to these works for more details on the approach. Briefly, the general solution
of (9) is a linear combination of Ai(Z) and Bi(Z) (i.e. A0Ai(Z) + B0Bi(Z), for some
constants A0 and B0) and this general solution has to vanish at both boundaries. When
the deep wall is located at large positive Z(y =L), where Ai(Z(L)) � 1 � Bi(Z(L))
(see figure 4a) B0 must be negligibly small, of order Ai(Z(L))A0/Bi(Z(L)), i.e. B0Bi(Z)
can be neglected in the linear combination. In this case, the solution of (9) is well
approximated by Ai(Z) only and the deep wall BC is trivially satisfied by Ai alone.
The BC at the shallow wall is satisfied only if y = 0 transforms into one of the
zeros of Ai(Z). The zeros of Ai (marked as Zn) are listed in the literature and the
first three, shown in figure 4a, are Z0 = −2.3811, Z1 = −4.08795, Z2 = −5.5205 and
Z3 = −6.67867.

To justify the neglect Bi(Z), we require that the deep wall be located at Z � 4
where the vanishing of the solution implies that the contribution of Bi(Z) in the linear
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Figure 4. (a) The Airy functions Ai(Z) (black curve) and Bi(Z) (grey curve). For negative Z
values, both functions are oscillatory while for positive Z values Ai(Z) is decaying and Bi(Z)
is growing. (b–d ) Numerically calculated eigenfunctions of the first three TRW modes in a
channel. The vertical displacement (η) eigenfunctions are given by the dash-dotted curves and
that of the cross-channel velocity (V) by the solid curves. The parameter values are L = 20,
k =1 and α = 0.5 and the normalization values (η at y = 0) are chosen as 0.1 in the first and
third modes and −0.1 in the second mode to demonstrate the similarity between the V profiles
and Ai(Z) in (a).

combination is O(10−8) compared with Ai(Z). This choice of deep wall location also
guarantees that the BC is satisfied since Ai(4) ≈ 10−4.

In order for the Airy function approximation to be valid, the term k2 − E − α2/4,
which multiplies αy in the coefficient of Ψ in (6), has to be positive. If we further
assume that E + α2/4 is negligible compared with k2 in the Z(y) transformation (see
(10); we will verify this below), then a simple formula for the dispersion relation for
TRW is obtained:

ω =
αk

1 + k2 + α2/4 + k4/3α2/3|Zn| . (11)

Equation (11) yields an explicit expression for the phase speed c = ω/k. To
validate it, we substitute this expression into (7) and examine the conditions under
which E + α2/4 is indeed negligible compared to k2. The resulting condition is:
k2 	 α2/(4|Zn|k−2/3α2/3 + 4), which is satisfied for k > 0.01, 0.1, 0.18, 0.35 when
α = 0.1, 0.5, 1 and 2, respectively. These values of α are used in figure 3, where
we compare the exact, numerically computed, dispersion relation (solid curves) with
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Figure 5. (a, b) Numerically calculated dispersion relations of the first TRW mode for
the indicated channel widths (L) (solid lines). Also shown are the non-harmonic (Airy)
approximations ((11); dashed lines) for the indicated α-values (these approximations are
independent of L). (c) The values of Lth(α) as given by (12) for the indicated k-values.

the harmonic relation (8), (grey curves) and the Airy dispersion (11), (dashed curves).
The comparison clearly demonstrates that the non-harmonic dispersion relation, (11),
provides a much more accurate estimate to the exact solution than the harmonic
relation, (8), for sufficiently wide channels and for sufficiently large α. Note that
in figure 3(c) where α = 2, the above formal condition for the validity of the non-
harmonic solution is not satisfied for k < 0.35, yet it provides a more accurate estimate
than the harmonic solution at all k values.

In figure 5, we compare the non-harmonic dispersion relations with the exact
numerical solutions for different channel widths (figure 5a, b). It is clear from (11)
that the non-harmonic relation is independent of the channel width, L and for small
α( = 0.1; figure 5a) the numerical solutions approach the Airy estimate as L increases
(even for L = 5, the curves are quite similar at k > 1.5). In contrast, for large value of
α( = 2, figure 5b) the error in the estimate is noticeable even for very wide channels
(e.g. L =30) and for both large and small k. Yet, the non-harmonic solution is a
much better approximation to the exact (numerical) one compared with the harmonic
solution for the same parameter values (see figure 3c for a three-way comparison at
the same α).

Since the non-harmonic dispersion relation in (11) is independent of L while the
harmonic relation in (8) increases with L, it is possible to find a threshold channel
width (Lth) at which the two solutions are identical for a given wavenumber, k.
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Since for L > Lth the harmonic frequency is larger than the non-harmonic one (for
a given value of k), this threshold value is the minimal channel width for which the
non-harmonic solution provides a more accurate approximation than the harmonic
solution. This threshold channel width, Lth (which varies with the values of α, k and
the mode number, n), is given by

Lth(α, k) = (n + 1)π
(
α2/4 + |Zn|k4/3α2/3

)−1/2
. (12)

The dependence of this threshold channel width on α for different wavenumber values
is presented in figure 5(c).

The Airy-function approximation for the amplitude of the eigenfunction,
V (y), ( = Ai(Z(y))) decays for positive Z faster than exponential for all n. Hence,
the above analysis implies that for all TRW modes, the wave amplitude vanishes
sufficiently far from the shallow wall even though the sloping bottom (which generates
the mean vorticity as explained in the Introduction) exits there. These theoretical
characteristics are quite obvious in the numerical solution for the eigenfunctions as
shown in figure 4(b–d ). Also evident from a comparison of figure 4(a–d ) is that the
variations of mode n (where n= 0, 1 or 2) are very well approximated by Ai(Z)
provided the shallow wall is placed right at Zn and regardless of the location of the
deep wall.

4. Laboratory experiments
In the laboratory experiments described here, the waves are generated mechanically

in one end of a cylindrical turntable with sloping bottom while the wavenumber is
observed at another end of the turntable. By varying the generating frequency we
get a k(ω) relation that is the inverse of the theoretical ω(k) dispersion relation (this
generation-observation approach was also used by Phillips 1965 and Caldwell et al.
1972). For the circle located in the centre of the slope (radius of 4 m), these waves
travel some 15 m from the generating point at one end of the tank to the observation
point located at the opposite the end of the tank (see figure 6). The observed inverse
dispersion relations are then compared to a numerical theory that solves the governing
equations (system 4) for the specific set-up shown in figure 6, in which the sloping
bottom occupies the shallowest, outermost, 4 m while in the remaining 1.5 m located
closer to the centre of the tank the bottom is flat.

4.1. The experimental set-up and method of analysis

The experiments were performed in an annulus that occupies the outer 5.5 m of a
6.5 m cylindrical tank and the maximal water depth in the annulus (and in the tank)
is 1m (see figure 6). In the outer periphery, a 4 m wide conical bottom with a 10 %
slope was introduced into the tank so that the maximal water depth at the shallow
(outer) wall is reduced by 0.4 m (i.e. it is 0.6 m). The tank is placed on a rotating
platform whose radius is 7 m that rotates counterclockwise with a controlled (variable)
angular speed, with minimal periods of about 30 s. The system is equipped with an
anti-precession mechanism that maintains speed uniformity to better than 10−4 of the
rotational frequency. Heavy plastic curtains were hung above the outer wall of the
turntable to isolate the air above the tank from the air outside of it so as to minimize
friction between the water in the tank and the overlying air. For the rotation speeds
used in the experiments, the curvature of the water surface is of order 2–5 cm, which
adds a tiny (negligible) variation to the water thickness compared with the variations
that result from the bottom slope.
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Figure 6. Radial cross-section (a) and a planar top view (b) of the tank. The location of
the separation between the sloping bottom part and the flat bottom part as well as the
radial location of the inner wall are given on the radial cross-section. The radial motion of
the wavemaker up and down the slope generates waves that travel azimuthally towards the
measurement area indicated by ‘laser sheet’ in the planar top view. Both sketches are not to
scale.

The generation of waves uses a similar procedure to that used by Caldwell et
al. (1972). Water is displaced in the radial direction by rolling a heavy rod up and
down the sloping bottom using a 500 Hz electric motor (CEM 83V) whose output
frequency is divided by 480 using two chain-saw wheel systems. The generated period
and amplitude were controlled externally by LABVIEW software (see e.g. Sumathi &
Surekha 2007). The up-and-down movement of water columns across isobaths creates
disturbances that propagate along isobaths around the tank to the measurement area
located at the opposite side of the tank (see figure 6b). Since there are many cases
in which a single frequency has two corresponding wavenumbers (see e.g. figure 3),
both the location of the rolling rod and its length (i.e. long or short) were changed
so as to fit the theoretically relevant wavenumber. Towards that end, two types of
rods were used to generate waves with the same frequency but different wavelength
(wavenumber): A 2m long, 20 cm diameter, rod (the long rod used for generating long
waves) and a 0.4 m long 15 cm diameter rod (the short rod used for generating short
waves). In all cases, the rods were centred at the location of maximal amplitude as
predicted by the numerical theory. In two of the experiments in which we attempted
to generate the second (n= 1) mode, the waves were generated by two short rods
that were oppositely connected to the motor and placed parallel to each other at two
isobaths, which is the way Caldwell et al. (1972) generated their second mode.

The horizontal velocities were measured in the observation area of the tank using a
particle imaging velocimetry (PIV) technique that consists of particles (used to trace
the fluid flow), an illuminating laser sheet and a camera.

The density of the polystyrene (600 μm) particles used as tracers was adjusted to
be slightly denser than the water and the particles were subsequently distributed in
the water shortly prior to the onset of the experiment. The minute density difference
minimizes the number of particles that might stay at the water surface while being
pushed around by the relative motion of the overlying air. This air-induced motion
of the tracer particles might have masked the experimental results that are concerned
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with the water motion, observed by following the particles. After every 20 experiments,
the water was changed to enable the removal of particles that had sunk to the bottom
of the tank during those experiments.

The laser beam is generated with a Millennia 6W solid laser generator whose
wavelength is 532 nm. The laser sheet is produced by a 6850, Cambridge technology
mirror galvanometer (a controlled rotating mirror) located in the centre of the tank
that creates an 18◦ sheet of green light at the required water depth. The mirror
frequencies were adjusted to the exposure time of the camera so that at least two
cycles of the mirror were completed in each exposure. All experiments were performed
under dark conditions.

The camera used in our experiments is a wide angel (17◦) Nikon D200 camera
(10 mpixel) positioned above the tank and rotating with it while covering most of
the area illuminated by the laser. The rate of camera shots was controlled by Nikon
software, which was programmed to take a frame every 5 s.

The identification of the period, wavenumber and amplitude of the waves generated
(and observed) as described above was done by analysing the digital images using
the ‘UVMAT’ software self-produced in LEGI-Coriolis, which processes the original
images and generates velocity fields using correlation imaging velocimetry method.
From the calculated velocity fields, the software generates velocity time series on a
grid of points and for complete cycles of oscillation, it generates the amplitude and
phase of the velocity field. Further details of the analysis and software can be found at
http://www.coriolis-legi.org/CIVPROJECT/DOC GENE/CIV doc lim.html, where
the entire image processing method is described in full.

An important issue that should be noted here is that although the experiments
are done in a cylindrical tank the software transforms the velocity vector fields
into Cartesian coordinates (about a radius of 3.5 m—the centre of the slope).
Accordingly, wavelengths are transformed by UVMAT from radians to metres and
phase speeds from radians/second to metres/second. Thus, despite the apparent
geometric mismatch, the experimental results should be compared with a Cartesian
theory and not a cylindrical one.

4.2. Experimental results

Only two-dimensional parameters H0 and f were varied in the various experiments
described below. These two parameters, along with the constants g( = 9.81 ms−2),
L∗( = 5.5 m) and H ′( = 0.1), determine the values of the two non-dimensional
parameters: α = RdH

′/H0 and L =L∗/Rd of the theory outlined in § 2. To help
the reader to keep track of the dimensional quantities, the results of this section are
presented using the non-dimensional parameters: ω∗/f = ω, L∗/Rd = L and k∗Rd = k.
The value of α = 0.1Rd/H0 equals 0.313(H0)

1/2f −1.
The laboratory set-up includes both a slope region and a flat bottom region,

which mandates a more complicated BC at the deep side than that considered in the
analytic theory. An analytical solution of this complex geometry is not available but
a numerical solution is as easy to compute as in the case of a channel with uniformly
sloping bottom described above. The experimental results are therefore compared
with numerical solutions of the eigenvalue problem in which the non-dimensional
width includes both the slope and the flat parts of the radial ranges of the annulus
(i.e. L = 5.5 m/Rd). The analytical dispersion relations given above were computed for
the harmonic theory with L = 4 m (i.e. only the sloping segment) and non-harmonic
(Airy) theory (where the width is not a model parameter). It should be pointed out
that a comparison of the experiments conducted with the complex BC at the deep side
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Figure 7. A comparison between the harmonic ((8); grey-dashed curve) and Airy-function
((11); black-dashed curve) analytic approximations, the numerical solutions (solid) and
experimental results (solid error bars) for the dispersion relation of TRW in the two
experimental set-ups. (a) Narrow channel with L∗/Rd = 0.88 and α =2.25. (b) Wide channel
with L∗/Rd = 2.63 and α = 3.8. In each set-up (i.e. panel) two experiments were carried out
with forcing frequencies higher than the maximal frequency found by the numerical theory
and in all these experiments no waves were observed at all. Black circles on the dashed-grey
curve represent the corresponding wavenumber values predicted by the harmonic theory at
these frequencies.

with the theoretical results calculated with the simpler BC cannot be easily justified.
However, the expressions of these theories are the only analytical results available
for comparison with the experiments, so it should not come as a surprise that the
harmonic theory does not show good accuracy even for parameter values where it
should be valid in the case of a simple BC (i.e. the lower wavenumber values in
figure 7a). Perhaps, the successful match between the experimental results and the
predictions of non-harmonic theory in the range of parameters satisfying the latter’s
validity conditions is the real surprise of this comparison (which is a result of its
independence of L so the exact location of the deep wall in the flat part of the tank
has no effect on the eigenfunctions).

The comparison between the experimental results and the theoretical predictions is
shown in figure 7(a, b) for a narrow channel (L∗/Rd = 0.88, α = 2.25; figure 7a) and a
wide channel (L∗/Rd = 2.63, α = 3.8; figure 7b). The non-dimensional wavenumbers
(k∗Rd) are presented as horizontal error bars determined by the mean and variance
of the values measured for each forcing frequency (ω∗/f ). The small error in the
frequency is given by the (tiny) vertical error bar. Some experiments were performed
with forcing frequency higher than the maximal frequency predicted by the numerical
theory, and in these cases no low-frequency waves could be detected whatsoever.
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Figure 8. Numerically calculated absolute values of the cross-channel velocity amplitudes
(solid line) compared with the observed absolute values of the cross-channel velocity amplitude
(grey dotted line; 1 pixel = 2.3 mm). The results in (a) are for the first mode while those in (b)
are for the second mode. Both the numerical results and the experimental data are plotted as
functions of y∗ so the shallow wall is at y∗ = 0. Trapping of the waves near the shallow wall is
clearly noticed in both cases. The relation between the phase speed and the maximal velocity
amplitude in (a) is Vmax/c ≈ 0.03 and in (b) is Vmax/c ≈ 10−3; hence, the linear approximation
implicit in the LSWE (water velocity much smaller compared with the phase speed) is valid.

These experiments are shown by circles on the harmonic dispersion curve at the
corresponding forcing frequencies in figure 7). For both channel widths, the agreement
between the numerically calculated dispersion relations and the experimental results
for k(ω) is good. Good agreement is also found between the non-harmonic analytical
theory and the experiments at large wavenumbers only, since the values of α used
in the experiments are high (a result of physical limitation on the dimensional
parameters H0 and f in the laboratory). The fact that no waves were observed in
the experiments at frequencies above the numerically computed maxima bolsters the
accuracy of the numerical predictions and highlights the irrelevance of the harmonic
theory, which predicts the existence of TRW at these frequencies. The non-harmonic
theory agrees with the experimental findings at high wavenumbers, where (12) (viewed
as a condition for its validity in terms of the threshold value of k for a given value of
L and α on its right-hand side) is satisfied.

The cross-channel structure of the cross-channel velocity (the cross-channel
direction is the radial direction of the cylindrical system) is shown in figure 8,
for the first (n= 0, figure 8a) and second (n= 1, figure 8b) modes. These experimental
results estimated from complete cycles of oscillation are presented as absolute values of
amplitudes, and are therefore compared with the absolute values of the corresponding
numerical predication. The linear theory determines the amplitudes only up to an
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arbitrary normalization factor (e.g. the value of η at y = 0). Therefore, the theoretical
curves were scaled so as to fit the maximal experimental amplitudes, so only the
number of nodal/maximal points and their locations should be compared. The
parameter values used in these experiments correspond to those of figure 7(b).

The overall cross-channel structure of the velocity amplitude in both modes clearly
shows trapping of the waves near the shallow wall as predicted by the numerical
calculations and the non-harmonic theory. The locations of the nodal points in the
numerical results are in excellent agreement with those in the experiments. In the first
mode, the maximum is shifted as a result of sharp decay of the amplitude towards
the outer (i.e. deep) wall, and in the second mode the relative magnitudes of the two
maxima do not match the numerical prediction. This might be caused by frictional
effects near the shallow wall (mainly in the first metre or so) that are filtered out in
our non-viscous theory.

5. Discussion and summary
A comparison between the theoretical and experimental results shows that the

LSWE model is applicable to the experimental results for long waves, provided that
the mean depth is not more than 10 % of the radius of deformation. In the experiments
described in the present work, as well as those reviewed in the Introduction, the waves
are generated externally (forced), yet the theories to which these experiments are
compared are homogeneous (free). The excellent fit between the free (homogenous)
theories and the forced experiments is probably a result of a resonance that occurs
when the frequency of the wave, which develops in the tank (determined by the
non-dimensional model parameters, including the wavenumber), matches the forcing
frequency (for a comparison of forced problems with experiments, see Pierini et al.
2001).

Our exact (numerical) solutions agree with the laboratory findings in narrow and
wide channels, with respect to both the dispersion relation and the cross-channel
structure of the amplitude. In contrast, the dispersion curves of the classical harmonic
theory differ significantly from the numerical solution for either large slopes or
wide channels, and in those cases the non-harmonic analytic theory provides a more
accurate approximation. In the non-harmonic solution, the channel width ceases to
be a model parameter once it exceeds a certain threshold value (given in (12)). Thus,
for wide channels, the number of model parameters in the problem is reduced to
only two: the depth at the shallow wall and the angle of the bottom slope. The
non-harmonic structure and trapping of the amplitude near the shallow wall, both
of which are predicted by our analysis, are confirmed by the observed amplitudes in
wide channels.

The present theory predicts the existence of a threshold channel width, (12), below
which the harmonic theory is accurate and above which the non-harmonic theory
becomes valid. This distinction allows an informative decision, based on a simple
formula, of the parameter ranges where the harmonic and the non-harmonic analytical
theories should be applied to approximate the dispersion relation of TRW. For a fixed
channel width, this equation provides an estimate of the threshold wavenumber above
which the harmonic theory loses its validity and the non-harmonic theory becomes
relevant.

In the analysis presented above, the features of the long channel velocity (u) were
ignored since the wave theory is fully determined by V and η. The u(y) structure
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Figure 9. (a) Non-dimensional amplitudes of u, V and η as a function of y in solid black, solid
grey and dash-dotted black lines, respectively. The amplitude of u (long channel velocity) is
largest at the shallow wall (y = 0) and as expected from (3a) u(0)) = η(0)/c =0.1/0.131 = 0.76.
(b,c) The numerically calculated (black solid line) cross-channel structure of the long channel
velocity amplitude, u(y), compared with the observed velocity (grey line with dot marks).
The values of the (dimensional and non-dimensional) model parameters are indicated on the
right-hand side and u is given in absolute values as before (1 pixel = 2.3 mm).

shown in figure 9(a) (black solid line) was computed from the algebraic relation in
(3a) for the parameter values used in figure 4 with k = 1. Two main features are
obvious: First, the u(y) amplitude has its maximal value at the shallow wall and at
y > 0 it oscillates with decaying maxima (and the rate of decay is faster than V and
η). Second, u(y) has an extra nodal point to that of V or η. Moreover, at the shallow
wall where V vanishes, (3a) yields the simple relation η/u = c; hence, since c is smaller
than unity (about 0.1), the value of u there is larger than η. These features of the
u(y) profile are observed in the laboratory experiments in both the n= 0 and n=1
modes shown in figure 9(b, c). The comparison of the u(y) profiles (in absolute values
as before) between experiments and numerical results shows that in both modes the
theory predicts the location of the above-mentioned nodal point fairly accurately.
The effect of friction is significant in both profiles and hence the observed values of
u(y = 0) are much smaller than the values predicted by the inviscid theory (which are
1/c times η(y = 0)). We should also note that in figure 9(c) H0 is smaller (= 0.05 m)
and the damping is stronger compared with figure 9(b) where H0 is larger (= 0.2m).
If the main features of the present channel theory are relevant to observations on
continental shelves, these distinct features of the non-harmonic solution should be
detectable in coastal studies.
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